skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Grafberger, Stefan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Machine learning (ML) is increasingly used to automate impactful decisions, and the risks arising from this widespread use are garnering attention from policy makers, scientists, and the media. ML applications are often brittle with respect to their input data, which leads to concerns about their correctness, reliability, and fairness. In this paper, we describe mlinspect, a library that helps diagnose and mitigate technical bias that may arise during preprocessing steps in an ML pipeline. We refer to these problems collectively as data distribution bugs. The key idea is to extract a directed acyclic graph representation of the dataflow from a preprocessing pipeline and to use this representation to automatically instrument the code with predefined inspections. These inspections are based on a lightweight annotation propagation approach to propagate metadata such as lineage information from operator to operator. In contrast to existing work, mlinspect operates on declarative abstractions of popular data science libraries like estimator/transformer pipelines and does not require manual code instrumentation. We discuss the design and implementation of the mlinspect library and give a comprehensive end-to-end example that illustrates its functionality. 
    more » « less
  2. null (Ed.)
    Machine Learning (ML) is increasingly used to automate impactful decisions, and the risks arising from this wide-spread use are garnering attention from policy makers, scientists, and the media. ML applications are often very brittle with respect to their input data, which leads to concerns about their reliability, accountability, and fairness. In this paper we discuss such hard-to-identify data issues and describe mlinspect, a library that enables lightweight lineage-based inspection of ML preprocessing pipelines. The key idea is to extract a directed acyclic graph representation of the data flow from ML preprocessing pipelines in Python, and to use this representation to automatically instrument the code with predefined inspections based on a lightweight annotation propagation approach. In contrast to existing work, mlinspect operates on declarative abstractions of popular data science libraries like estimator/transformer pipelines and does not require manual code instrumentation. We discuss the design and implementation of the mlinspect prototype, and give a complex end-to-end example that illustrates its functionality. 
    more » « less
  3. null (Ed.)
    Machine Learning (ML) is increasingly used to automate impactful decisions, and the risks arising from this wide-spread use are garnering attention from policymakers, scientists, and the media. ML applications are often very brittle with respect to their input data, which leads to concerns about their reliability, accountability, and fairness. While bias detection cannot be fully automated, computational tools can help pinpoint particular types of data issues. We recently proposed mlinspect, a library that enables lightweight lineage-based inspection of ML preprocessing pipelines. In this demonstration, we show how mlinspect can be used to detect data distribution bugs in a representative pipeline. In contrast to existing work, mlinspect operates on declarative abstractions of popular data science libraries like estimator/transformer pipelines, can handle both relational and matrix data, and does not require manual code instrumentation. The library is publicly available at https://github.com/stefan-grafberger/mlinspect. 
    more » « less